#133 The highway between Atlanta, Georgia, and Athens
The highway between Atlanta, Georgia, and Athens - Math
ChemistryExplain daily providing Q&A content “#133 The highway between Atlanta, Georgia, and Athens" in Bridges math curriculum, Dr mather, Carnegie math, 10th maths, 10th-grade math problems, MathGet the Free Online Chemistry Q&A Questions And Answers with explain. To crack any examinations and Interview tests these Chemistry Questions And Answers are very useful. Here we have uploaded the Free Online Chemistry Questions. Here we are also given the all chemistry topic.
ChemistryExplain team has covered all Topics related to inorganic, organic, physical chemistry, and others So, Prepare these Chemistry Questions and Answers with Explanation Pdf.
For More Chegg Questions
Free Chegg Question
he highway between Atlanta, Georgia and Athens, Georgia has a high incidence of accidents along its 100 kilometers. Public safety officers say that the occurrence of accidents along the highway is randomly (uniformly) distributed, but the news media say otherwise. The Georgia Department of Public Safety published records for the month of September These records indicated the point at which 30 accidents involving an injury or death occurred, as follows (the data points representing the distance from the city limits of Atlanta):Use the Kolmogorov-Smirnov test to discover whether the distribution of location of accidents is uniformly distributed for the month of September.
For More Chemistry Notes and Helpful Content Subscribe Our YouTube Chanel - Chemistry Explain
Free Chegg Answer
The pdf of uniform distribution is f(x) = 1 / (30-1) = 1/29 for 1 <= x <= 30
H0: F(X)=F0(x)
H1: F(X) not=F0(x)
where F(x) is the (unknown) cdf from which our data were sampled, and
The CDF of uniform distribution is F0(X) = x/29 1<x<30
Now, in working towards calculating dn, we first need to order the eight data points so that y1≤⋯≤y30. The table below provides all the necessary values for finding the KS test statistic. Note that the empirical cdf satisfies Fn(yk)=k/30, for k=0,1,…,30
k | yk | Fn(yk-1) | Fn(yk) | F0(yk)) | |Fn(yk-1)-F0(yk))| | |Fn(yk)-F0(yk))| |
1 | 6 | 0 | 0.033333 | 0.206897 | 0.206896552 | 0.173563218 |
2 | 7 | 0.033333 | 0.066667 | 0.241379 | 0.208045977 | 0.174712644 |
3 | 17.2 | 0.066667 | 0.1 | 0.593103 | 0.526436782 | 0.493103448 |
4 | 20.6 | 0.1 | 0.133333 | 0.710345 | 0.610344828 | 0.577011494 |
5 | 21.6 | 0.133333 | 0.166667 | 0.744828 | 0.611494253 | 0.57816092 |
6 | 23.3 | 0.166667 | 0.2 | 0.803448 | 0.636781609 | 0.603448276 |
7 | 23.7 | 0.2 | 0.233333 | 0.817241 | 0.617241379 | 0.583908046 |
8 | 27.3 | 0.233333 | 0.266667 | 0.941379 | 0.708045977 | 0.674712644 |
9 | 27.3 | 0.266667 | 0.3 | 0.941379 | 0.674712644 | 0.64137931 |
10 | 32.4 | 0.3 | 0.333333 | 1.117241 | 0.817241379 | 0.783908046 |
11 | 36.3 | 0.333333 | 0.366667 | 1.251724 | 0.918390805 | 0.885057471 |
12 | 36.8 | 0.366667 | 0.4 | 1.268966 | 0.902298851 | 0.868965517 |
13 | 40.7 | 0.4 | 0.433333 | 1.403448 | 1.003448276 | 0.970114943 |
14 | 45.2 | 0.433333 | 0.466667 | 1.558621 | 1.125287356 | 1.091954023 |
15 | 45.3 | 0.466667 | 0.5 | 1.562069 | 1.095402299 | 1.062068966 |
16 | 62.6 | 0.5 | 0.533333 | 2.158621 | 1.65862069 | 1.625287356 |
17 | 67.3 | 0.533333 | 0.566667 | 2.32069 | 1.787356322 | 1.754022989 |
18 | 69.8 | 0.566667 | 0.6 | 2.406897 | 1.840229885 | 1.806896552 |
19 | 73.1 | 0.6 | 0.633333 | 2.52069 | 1.920689655 | 1.887356322 |
20 | 73.2 | 0.633333 | 0.666667 | 2.524138 | 1.890804598 | 1.857471264 |
21 | 76.6 | 0.666667 | 0.7 | 2.641379 | 1.974712644 | 1.94137931 |
22 | 87.2 | 0.7 | 0.733333 | 3.006897 | 2.306896552 | 2.273563218 |
23 | 87.6 | 0.733333 | 0.766667 | 3.02069 | 2.287356322 | 2.254022989 |
24 | 87.8 | 0.766667 | 0.8 | 3.027586 | 2.26091954 | 2.227586207 |
25 | 88.3 | 0.8 | 0.833333 | 3.044828 | 2.244827586 | 2.211494253 |
26 | 90.1 | 0.833333 | 0.866667 | 3.106897 | 2.273563218 | 2.240229885 |
27 | 91.7 | 0.866667 | 0.9 | 3.162069 | 2.295402299 | 2.262068966 |
28 | 97.4 | 0.9 | 0.933333 | 3.358621 | 2.45862069 | 2.425287356 |
29 | 98.8 | 0.933333 | 0.966667 | 3.406897 | 2.473563218 | 2.440229885 |
30 | 99.7 | 0.966667 | 1 | 3.437931 | 2.471264368 | 2.437931034 |
i.e. The distribution of location of accidents is not uniformly distributed for the month of september
Labels: Chegg, Free Chegg Answer, Q&A Math
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home