Friday, August 21, 2020

#133 The highway between Atlanta, Georgia, and Athens

The highway between Atlanta, Georgia, and Athens - Math

ChemistryExplain daily providing Q&A content “#133 The highway between Atlanta, Georgia, and Athens" in Bridges math curriculum, Dr mather, Carnegie math, 10th maths, 10th-grade math problems, Math
ChemistryExplain “#133 The highway between Atlanta, Georgia, and Athens in Bridges math curriculum, Dr mather, Carnegie math, 10th maths, 10th-grade math problems, Math
Get the Free Online Chemistry Q&A Questions And Answers with explain. To crack any examinations and Interview tests these Chemistry Questions And Answers are very useful. Here we have uploaded the Free Online Chemistry Questions. Here we are also given the all chemistry topic.
 ChemistryExplain team has covered all Topics related to inorganic, organic, physical chemistry, and others So, Prepare these Chemistry Questions and Answers with Explanation Pdf.
For More Chegg Questions

Free Chegg Question

he highway between Atlanta, Georgia and Athens, Georgia has a high incidence of accidents along its 100 kilometers. Public safety officers say that the occurrence of accidents along the highway is randomly (uniformly) distributed, but the news media say otherwise. The Georgia Department of Public Safety published records for the month of September These records indicated the point at which 30 accidents involving an injury or death occurred, as follows (the data points representing the distance from the city limits of Atlanta):
ChemistryExplain “#133 The highway between Atlanta, Georgia, and Athens in Bridges math curriculum, Dr mather, Carnegie math, 10th maths, 10th-grade math problems, Math
Use the Kolmogorov-Smirnov test to discover whether the distribution of location of accidents is uniformly distributed for the month of September.
 For More Chemistry Notes and Helpful Content Subscribe Our YouTube Chanel - Chemistry Explain  

Free Chegg Answer


The pdf of uniform distribution is f(x) = 1 / (30-1) = 1/29   for 1 <= x <= 30
H0: F(X)=F0(x)
H1: F(X) not=F0(x)
where F(x) is the (unknown) cdf from which our data were sampled, and
The CDF of uniform distribution is F0(X) = x/29              1<x<30
Now, in working towards calculating dn, we first need to order the eight data points so that y1≤⋯≤y30. The table below provides all the necessary values for finding the KS test statistic. Note that the empirical cdf satisfies Fn(yk)=k/30, for k=0,1,…,30
k yk Fn(yk-1) Fn(yk) F0(yk)) |Fn(yk-1)-F0(yk))| |Fn(yk)-F0(yk))|
1 6 0 0.033333 0.206897 0.206896552 0.173563218
2 7 0.033333 0.066667 0.241379 0.208045977 0.174712644
3 17.2 0.066667 0.1 0.593103 0.526436782 0.493103448
4 20.6 0.1 0.133333 0.710345 0.610344828 0.577011494
5 21.6 0.133333 0.166667 0.744828 0.611494253 0.57816092
6 23.3 0.166667 0.2 0.803448 0.636781609 0.603448276
7 23.7 0.2 0.233333 0.817241 0.617241379 0.583908046
8 27.3 0.233333 0.266667 0.941379 0.708045977 0.674712644
9 27.3 0.266667 0.3 0.941379 0.674712644 0.64137931
10 32.4 0.3 0.333333 1.117241 0.817241379 0.783908046
11 36.3 0.333333 0.366667 1.251724 0.918390805 0.885057471
12 36.8 0.366667 0.4 1.268966 0.902298851 0.868965517
13 40.7 0.4 0.433333 1.403448 1.003448276 0.970114943
14 45.2 0.433333 0.466667 1.558621 1.125287356 1.091954023
15 45.3 0.466667 0.5 1.562069 1.095402299 1.062068966
16 62.6 0.5 0.533333 2.158621 1.65862069 1.625287356
17 67.3 0.533333 0.566667 2.32069 1.787356322 1.754022989
18 69.8 0.566667 0.6 2.406897 1.840229885 1.806896552
19 73.1 0.6 0.633333 2.52069 1.920689655 1.887356322
20 73.2 0.633333 0.666667 2.524138 1.890804598 1.857471264
21 76.6 0.666667 0.7 2.641379 1.974712644 1.94137931
22 87.2 0.7 0.733333 3.006897 2.306896552 2.273563218
23 87.6 0.733333 0.766667 3.02069 2.287356322 2.254022989
24 87.8 0.766667 0.8 3.027586 2.26091954 2.227586207
25 88.3 0.8 0.833333 3.044828 2.244827586 2.211494253
26 90.1 0.833333 0.866667 3.106897 2.273563218 2.240229885
27 91.7 0.866667 0.9 3.162069 2.295402299 2.262068966
28 97.4 0.9 0.933333 3.358621 2.45862069 2.425287356
29 98.8 0.933333 0.966667 3.406897 2.473563218 2.440229885
30 99.7 0.966667 1 3.437931 2.471264368 2.437931034
The last two columns represent all the differences we need to check. The largest of these is d30=2.47356. From KS Table with α=0.05, the critical value is 0.24. So, we reject the claim that the data was not sampled from Uniform(1,30).
i.e. The distribution of location of accidents is not uniformly distributed for the month of september

Labels: , ,

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home